Arc-Flash Knowledge Center

April 23, 2020

What is an arc flash?

While an arc flash is sometimes used interchangeably with “arc fault”, an arc flash is more accurately defined as the light produced during an arc fault. An arc fault is a type of electrical fault that results from the breakdown of an insulating medium between two conductors where the energy is enough to sustain an arc across the insulator (often air) and can cause extreme amounts of light (arc flash), immense heat upwards of 19,000 °C, and a resulting explosive pressure wave (arc blast). These forces combine to create a hazardous condition that can vaporize metal, destroy equipment, and pose a significant hazard to anyone in the vicinity.

What causes an arc flash?

An arc flash happens when electric current flows through an air gap between conductors. There are several ways this can happen but the most common occurrence is when conductor insulation is worm or broken down.

What is an arc-flash relay?

Arc-flash relays are microprocessor-based devices that use optical sensors to detect the onset of a flash. The sensors are strategically placed in various cubicles or drawers inside the switchboard. Installing an arc-flash relay to rapidly detect developing arc flashes greatly reduces the total clearing time and the amount of energy released through an arcing fault. In turn, there is less damage to equipment and fewer and less severe injuries to nearby personnel.

How Do Arc-Flash Relays Work?

{videobox}D31SRv7KFpk{/videobox}

Video transcript:

There are many reasons an arc flash can occur and Littelfuse arc-flash relays can provide superior protection against its damaging results. Littelfuse market-leading arc-flash relay designs deliver reliable, easy-to-install protection. Littelfuse arc-flash relays and sensors are plug-and-play making them as easy to retrofit into existing switchgear as installing them into new equipment. No additional software is required.

Littelfuse arc-flash relays use light instead of current to detect an arc flash in under one millisecond. The fiber optic light sensor detects light throughout the entire length of the fiber. The sensor is ideal to protect buss bars, multiple compartment installations like motor control centers, or areas with many obstructions.

Littelfuse sensors are interchangeable. Giving the flexibility to adjust as needed during installation. The sensor’s red flashing light tells you the sensor is installed correctly and working. This visual indication serves as a warning to workers; if they open a cabinet and there’s no light they know to close it immediately. Littelfuse recommends mounting one or two sensors per cubicle to cover all horizontal and vertical buss bars, breaker compartments and anywhere there’s potential for an arc flash. Littelfuse arc-flash relays have backup trip paths, so if one fails the other is still protecting.

Arc flash relays improve sustainability and life of electrical equipment. They can also help lower the PPE category of protected equipment. An arc-flash relay is an integral part of an arc-flash protection system that can minimize damage, save money, time and lives.

Littelfuse. Expertise applied, Answers delivered.

Call our application experts at (800) 832-3873 to get more information.

Why are arc-flash relays important?

Arc-flash relays are a necessary component in an electrical cabinet because they reduce the amount of incident energy in the system. While an arc-flash relay cannot prevent an arc flash from happening, it will protect critical assets and workers’ safety by reducing the severity of the flash. An arc-flash relay is an integral part of an arc-flash protection scheme that can minimize damage, and save money, time, and lives.

How much energy is in a typical arc-flash incident?

A phase-to-phase fault on a 480-volt system with 20,000 amperes of fault current provides 9,600,000 watts of power. If there is no arc protection and the fault lasts for 200 milliseconds before the overcurrent protection clears it, then nearly 2 megajoules of energy will be released, which corresponds roughly to a stick of dynamite.

The energy formula for an arc flash is:
Energy = voltage × current × time
480 V × 20,000 A × 0.2 s = 1,920,000 J

For a given system voltage, two factors can be adjusted to reduce arc-flash energy: time and current. Time can be reduced by using an arc-flash relay, such as the PGR-8800 or AF0500, to rapidly detect an electric arc flash. An arc-flash relay causes the connected circuit breaker to trip at its instantaneous speed, overriding any inverse-time delay. Current can be reduced by using current-limiting fuses or, in the case of phase-to-ground faults, by using high-resistance grounding.

What are the key considerations when choosing an arc-flash relay?

The most important aspects of arc-flash relays are:

  •  –   reaction time,
  •  –   trip reliability,
  •  –   ease of installation,
  •  –   sensor flexibility,
  •  –   software,
  •  –   sensor design,
  •  –   avoidance of nuisance tripping, and
  •  –   scalability.

Gain a deeper understanding of which features to consider when selecting an arc-flash relay with the white paper, Key Considerations to Selecting an Arc-Flash Relay.

What are the consequences of an arc flash?

Arcing and electric arc flashes are uncontrolled, intense, luminous discharges of electrical energy that occur when electric current flows across what is normally an insulating medium. The most common cause of arc faults is insulation failure. These failures may be caused by defective or aging insulation material, poor or incorrect maintenance, dust, moisture, vermin, and human error (such as touching a test probe to the wrong surface or a tool slipping and touching live conductors).

Arc-flash events are dangerous, and potentially fatal, to personnel. According to OSHA, industrial arc-flash events cause about 80% of electrically-related incidents and fatalities among qualified electrical workers. Even if personnel injuries are avoided, an arc flash can destroy equipment, resulting in costly replacement and downtime.

Important Links Bar.jpg

https://www.littelfuse.com/marketing-pages/industrial/arc-flash-knowledge-center.aspx?utm_campaign=IBU-AF-Knowledge-Center&utm_medium=email&_hsenc=p2ANqtz-9bWzgUtmdb6GCjG7p-Rk1rt3v9zF62R2hb9HTw3N86h5tOPInVetejPpuf0H6mXgXEvjBerBbzZgGSwT5QQK7WcjaM9Q&_hsmi=86824401&utm_source=hs_email&utm_content=86824401&hsCtaTracking=0aa00354-96b8-4a78-befd-c6ed3fd9ae32%7Cd9bb4337-9eec-4506-a290-b4c62888cb92

 

Related Articles

Network Infrastructure Featured Product Spotlight

PBUS 14 Panduit logo 400

This webinar presented by Beth Lessard and Keith Cordero will be highlighting three Panduit solutions that will optimize network equipment and cabling to ensure that your spaces are efficiently and properly managed to support ever-evolving business needs of today and beyond. Products that will be featured include PanZone TrueEdge Wall Mount Enclsoure, Cable Managers, and Adjustable Depth 4-Post Rack.

REGISTER HERE


Editor’s Pick: Featured Product News

Siemens: SIMOVAC Non-Arc-Resistant and SIMOVAC-AR Arc-Resistant Motor Controllers

The Siemens SIMOVAC medium-voltage non-arc-resistant and SIMOVAC-AR arc-resistant controllers have a modular design incorporating up to two 12SVC400 (400 A) controllers, housed in a freestanding sheet steel enclosure. Each controller is UL 347 class E2, equipped with three current-limiting fuses, a non-load-break isolating switch, and a fixed-mounted vacuum contactor (plug-in type optional for 12SVC400). The enclosure is designed for front access, allowing the equipment to be located with the rear of the equipment close to a non-combustible wall.

Read More


Sponsored Content
Electrify Your Enterprise

Power is vital to production, and well-designed control cabinets are key. Allied Electronics & Automation offers a comprehensive collection of control cabinet solutions including PLCs, HMIs, contactors, miniature circuit breakers, terminal block connectors, DIN-rail power supplies, pushbutton switches, motor starters, overloads, power relays, industrial Ethernet switches and AC drives engineered to keep your operations running safely, reliably and efficiently.

Learn more HERE.


Products for Panel Builders

  • Saginaw: NextGen Enclosure Builder

    Saginaw: NextGen Enclosure Builder

    Introducing Saginaw’s latest enclosure building tool. It helps you discover the perfect enclosure by narrowing down your options based on your preferences. Select a starting point, and it will guide you through the process, leading you to the ideal NextGen enclosure. Read More…

  • Hammond Manufacturing: HYW Series Hygienic Type 4X Stainless Steel Wallmount Enclosure

    Hammond Manufacturing: HYW Series Hygienic Type 4X Stainless Steel Wallmount Enclosure

    Introducing the HYW Series hygienic Type 4X stainless steel wallmount enclosure from Hammond Manufacturing, designed to enclose electrical and/or electronic equipment and protect against harsh, hygienic environments for wallmount applications. A sloped top prevents water from resting on top as well as providing potential for controls mounting, while an internal hinge design and door-edge mounted… Read More…