Q&A With HELU: Cable Assemblies

February 14, 2023

Not all cables are hard-wired when they are terminated in their intended application. Some are terminated with something as simple as a ferrule or lug, while others are more complex and use a combination of male or female pins that are inserted into standard or custom connector housings. Cable assemblies can be built either by third-party assembly houses or directly by the cable manufacturer to streamline the supply chain and provide better value to the end user. Keith Wilkerson, HELUKABEL USA’s Business Segment Manager – Robotics & Automation, answers questions he hears in the field about when a pre-assembled cable makes sense, and what to think about when you choose to pre-assemble a cable.

Q: When would a machine builder or end user want to use cable assemblies over hardwiring?

A: Thanks to low installation costs, hardwiring remains the most common way to bring power and data signals to a machine. However, it is important for all parties involved in the design/build process to consider the total cost of each option. Hidden installation costs associated with hardwiring have their own labor and time-to-market considerations. For example, many machines must be disassembled for shipping and reassembled on site, meaning the machine must be hardwired twice. In addition, field wiring errors can cause commissioning delays or can even damage a machine. Subsequent on-site testing of the hard-wired systems can be complex and expensive.

After installation, reducing downtime for scheduled maintenance or caused by unforeseen disruptions is crucial. When disruptions occur, not if, replacing hard-wired cable can take hours. Cable assemblies enable “plug-and-play” installation of modular machine sub-assemblies (systems), which saves time and ensures wiring integrity. When you factor in wiring costs, including initial wiring at the machine builder, routine maintenance, and repairs requiring certified electricians and all other sources of downtime those initial savings seen with hardwiring can quickly evaporate. The advantages of “plug-and-play” solutions aid in making machine systems easier to ship, assemble and maintain, while also being more cost-effective over the long term.

Cable assemblies can range from Industrial Ethernet patch cables to power and feedback cables for VFDs and servo motors using standard or custom pinouts, and square or round connectors.

Q: What are a few of the biggest challenges in designing a “plug-and-play” assembly for a new project?

A: Like with any system, ensuring all the individual components will work together as one final, cohesive product is the name of the game. For instance, if a connector utilizes crimp and poke technology it is important to confirm the individual cable conductors not only match the wire gauge, or the circular mil area (CMA), but the insulation crimp must also be taken into consideration. The same can be said for the diameter of the outer jacket.

Whatever method of strain relief is used should match the cable and connector. Otherwise, the strain relief may be too tight causing undue stress on the cable itself or if it is too loose it will contribute to possible downtime due to open circuits. Matching the connector to the ampacity and voltage requirements is also of great importance. Finally, especially in the case of RJ45s and other Fieldbus systems, selecting a connector that is designed for the type of conductor, solid or stranded, can impact data rates and lost packets if not specified properly.

Q: Are cable assembly pinouts standardized or can they be customizable?

A: The answer is yes to both points. With standard automation cordsets, such as M12 A-coded and Industrial Ethernet assemblies, pinouts are the same across all manufacturers. Even though these types of cordsets are produced to a standard, end users should be cautious and consider the overall application. For instance, a manufacturer could offer a few different part numbers in a particular configuration. The difference is most often the cable specifications. If the cordset is going to be utilized on a robot arm (axis 3 to axis 6) a PVC-jacketed cable with a “static” or “stationary” rating would be doomed to fail.

Application-specific designs that do not follow an industry standard require a more detailed level of engineering and component-level product knowledge. There are many choices in the world of connectors and cables. Environmental considerations, electrical requirements, third-party norms, and many other parameters influence and can impact the overall success of a custom-designed harness. A good supplier base with the technical resources to assist an end user is needed when designing a new harness from a blank page.

Q: Which is a better strain relief solution, mechanical backshells or overmolded?

A: They each have their pros and cons. Mechanical backshells consist of a housing that is screwed on or affixed in some other manner such as a two-piece clamshell or a collet. These are normally assembled by hand and are more labor-intensive. Therefore, overall labor costs may be higher. Mechanical backshells are ideal for low-volume production runs. This is advantageous if you’re needing a faster development time. The purpose of overmolding is to create the best possible adhesion between the cable, connector and the overmold material. Overmolding improves the overall performance of the assembly.

The most notable advantage of overmolded cable assemblies is that they lend themselves to higher volume production runs due to the efficiencies of the manufacturing process. The most common pushback related to overmolded assemblies is repairability. The question then becomes, “What needs to be repaired?” Broken terminations or pushed pins are the most common problem. Other problems may be fractured wire terminations, in the case of solder joints, because of the cable pulling away from the connector insert. These common failures are all but eliminated with an overmolded solution.

Q: What are the steps in producing an overmolded cable assembly?

A: We will briefly cover the basics. The process begins the same as building any cable assembly by cutting the cable to length and preparing it for termination. Individual conductors are soldered or crimped per the manufacturer’s instructions. At this point, testing for shorts and opens should be conducted because once the pre-mold step is completed any repairs or rework cannot be performed and the assembly must be scrapped.

The next step is the pre-mold. This step in the process allows for full encapsulation of the individual conductors and the cable jacket. This provides a robust mechanical bond between the cable and the connector. The final step is the overmold. This is what gives overmolded assemblies their clean, high-value look. The “fins” at the back end of the mold provide strain relief for the cable itself.

Servo motors use either a power and feedback cable or a single cable solution where the cable and connector are capable of transmitting both power and data.

Q: What other considerations should be considered when an overmolded assembly is selected?

A: The outer diameter of the cable needs to be known in the design phase. Depending on the mold tool, adjustments may be required to accommodate a smaller or larger cable. That may lead to a simple modification of the mold tool or some machining time. Most often machining time will be covered by a non-recurring engineering (NRE) charge. Connector size is a limiting factor as well. Most mold machines can only accept up to a size 32 shell, an M40, or about 2.75″ in diameter.

The base material for an overmold is also important. Most often the best solution is to use the same material in the overmold as the cable jacket. So, if the cable jacket is polyurethane (PUR), then the overmold material should be PUR. This will allow the proper bonding of the materials to one another if molded correctly. The same rule holds for PVC and TPE jacket types.

Important_Links_Bar.jpg

https://www.helukabel.us/us-en/Newsroom/Overview/ – Q&A With HELU: Cable Assemblies

Related Articles

Network Infrastructure Featured Product Spotlight

PBUS 14 Panduit logo 400

This webinar presented by Beth Lessard and Keith Cordero will be highlighting three Panduit solutions that will optimize network equipment and cabling to ensure that your spaces are efficiently and properly managed to support ever-evolving business needs of today and beyond. Products that will be featured include PanZone TrueEdge Wall Mount Enclsoure, Cable Managers, and Adjustable Depth 4-Post Rack.

REGISTER HERE


Editor’s Pick: Featured Product News

Siemens: SIMOVAC Non-Arc-Resistant and SIMOVAC-AR Arc-Resistant Motor Controllers

The Siemens SIMOVAC medium-voltage non-arc-resistant and SIMOVAC-AR arc-resistant controllers have a modular design incorporating up to two 12SVC400 (400 A) controllers, housed in a freestanding sheet steel enclosure. Each controller is UL 347 class E2, equipped with three current-limiting fuses, a non-load-break isolating switch, and a fixed-mounted vacuum contactor (plug-in type optional for 12SVC400). The enclosure is designed for front access, allowing the equipment to be located with the rear of the equipment close to a non-combustible wall.

Read More


Sponsored Content
Electrify Your Enterprise

Power is vital to production, and well-designed control cabinets are key. Allied Electronics & Automation offers a comprehensive collection of control cabinet solutions including PLCs, HMIs, contactors, miniature circuit breakers, terminal block connectors, DIN-rail power supplies, pushbutton switches, motor starters, overloads, power relays, industrial Ethernet switches and AC drives engineered to keep your operations running safely, reliably and efficiently.

Learn more HERE.


Products for Panel Builders

  • AutomationDirect: AchieVe FDM Series 12mm Tubular Photoelectric Sensors

    AutomationDirect: AchieVe FDM Series 12mm Tubular Photoelectric Sensors

    AutomationDirect has recently added AchieVe FDM series 12mm tubular photoelectric sensors that offer a rugged metal construction, high IP67 protection ratings, and sensing distances up to 4 meters. These photoelectric sensors feature selectable light-on/dark-on operation, a 10 to 30 VDC operating voltage range, potentiometer or teach-in button sensitivity adjustment, and a fast 1kHz switching frequency. Highly… Read More…

  • METCASE’s TECHNOMET-CONTROL HMI Enclosures Now Offer Seamless Wall Mounting

    METCASE’s TECHNOMET-CONTROL HMI Enclosures Now Offer Seamless Wall Mounting

    METCASE’s premium TECHNOMET-CONTROL HMI enclosures for displays, touch screens and panel PCs can now be conveniently mounted in any suitable indoor location using a new wall mounting kit (accessory). The new kit allows the enclosures to be mounted on walls, machines and other flat surfaces to suit the user’s required location for their HMI system.… Read More…