The Many Types of Inconsistencies in Barcode Printing and Marking

January 6, 2021

Variations in the printing or marking method of barcodes and direct part marks (DPMs) – including poor ink distribution, incorrect thermal printer heat settings, or uneven pressure in surface abrasion – can hamper readability. Since no-reads can make production inefficient, it’s important to understand the types of print/mark inconsistencies and their causes.

Here, each category of inconsistency will be defined and then some possible solutions discussed.

Types of barcode and mark printing issues

1. Contrast is the difference between the light and dark elements of a barcode, or between the code and its quiet zone (the blank area surrounding a barcode) and other perimeter elements. For example, if the dark elements and the light elements of a DPM are too close in value due to low pressure in the marking process, readability will be poor.

2. Axial non-uniformity refers to the amount of deviation along a symbol’s major axes. (For example, a symbol’s Y-axis could be much larger than its X-axis). This inconsistency of X- and Y-dimensions typically indicates unexpected movement of the substrate as the barcode is applied by a printer or direct part marking device.

3. Grid non-uniformity is the amount of deviation in a barcode’s bar or cell elements from the ideal grid of a theoretical “perfect symbol.” Printing or marking errors that cause grid non-uniformity (usually due to unexpected movement of the substrate during code application) will produce a code that appears skewed or distorted, which may be unreadable by standard decoding devices.

4. Modulation refers to the uniformity between light and dark elements of a barcode. If either set of elements does not have a consistent value, unreadability can result. Like low contrast, this issue is often due to inconsistent distribution of ink for printed codes or uneven abrasion for direct part marks.

5. Print growth is the deviation of symbol element size from the theoretically “perfect” element size for a particular symbol. When a symbol is printed, the ink may bleed when it comes in contact with the substrate, causing an overprint. If there isn’t enough ink or pressure applied by printing or marking equipment, the result may be an underprint.

6. A quiet zone is the area surrounding a barcode that must be kept free of text, marks or other obstacles. When a barcode has been printed outside of the designated quiet zone area and is overlapping with other elements on the substrate, no-reads can result. This issue could be due to misalignment or movement of the substrate in relation to the printing equipment.

7. The reflectance of light from a symbol’s light or dark elements is what lets a barcode reader distinguish symbol elements from the background, as well as light elements from dark elements. Low reflectance may increase the probability that a symbol element may be incorrectly identified as light or dark, causing a no-read when the barcode reader attempts to interpret incorrect element patterns. Low reflectance may be caused by inconsistent print distribution or marking pressure by the equipment.

What can you do about printing inconsistencies?

It’s important to regularly inspect and maintain printing and marking equipment to ensure the production of consistently high-quality barcodes and their correct application to parts. When using ink to print codes, be sure to verify the correct distance of the printhead, clean and unblock printheads and nozzles, and ensure correct speed and setup of the printing process.

If barcodes are produced by laser coding, correct focal distance and a continuous power supply to the equipment ensures high-contrast printing without losses in print distribution or speed. Avoid ribbon wrinkles, verify correct insertion of the ribbon into equipment, and use high-quality technologies to evenly apply barcodes and avoid missing elements.

What can you do about inconsistencies in DPM application?

Direct part marking is accomplished by a number of methods, such as electromechanical etch, laser etch, chemical etch (methods in which codes are “scratched” into the substrate) and dot peen (a percussive method in which the symbol is hammered into the substrate with a metal stylus).

The key to producing high-quality marks by direct abrasion is consistent pressure of the abrading component against the substrate. It’s important to verify the quality of the material used to create the abrasion and the amount of power supplied to the marking equipment to ensure that barcodes are applied uniformly and with consistent pressure.

Important Links Bar.jpg

https://automation.omron.com/en/us/blog/barcode-inconsistencies-blog

 

Related Articles

Network Infrastructure Featured Product Spotlight

PBUS 14 Panduit logo 400

This webinar presented by Beth Lessard and Keith Cordero will be highlighting three Panduit solutions that will optimize network equipment and cabling to ensure that your spaces are efficiently and properly managed to support ever-evolving business needs of today and beyond. Products that will be featured include PanZone TrueEdge Wall Mount Enclsoure, Cable Managers, and Adjustable Depth 4-Post Rack.

REGISTER HERE


Editor’s Pick: Featured Product News

Siemens: SIMOVAC Non-Arc-Resistant and SIMOVAC-AR Arc-Resistant Motor Controllers

The Siemens SIMOVAC medium-voltage non-arc-resistant and SIMOVAC-AR arc-resistant controllers have a modular design incorporating up to two 12SVC400 (400 A) controllers, housed in a freestanding sheet steel enclosure. Each controller is UL 347 class E2, equipped with three current-limiting fuses, a non-load-break isolating switch, and a fixed-mounted vacuum contactor (plug-in type optional for 12SVC400). The enclosure is designed for front access, allowing the equipment to be located with the rear of the equipment close to a non-combustible wall.

Read More


Sponsored Content
Electrify Your Enterprise

Power is vital to production, and well-designed control cabinets are key. Allied Electronics & Automation offers a comprehensive collection of control cabinet solutions including PLCs, HMIs, contactors, miniature circuit breakers, terminal block connectors, DIN-rail power supplies, pushbutton switches, motor starters, overloads, power relays, industrial Ethernet switches and AC drives engineered to keep your operations running safely, reliably and efficiently.

Learn more HERE.


Products for Panel Builders

  • AutomationDirect: AchieVe FDM Series 12mm Tubular Photoelectric Sensors

    AutomationDirect: AchieVe FDM Series 12mm Tubular Photoelectric Sensors

    AutomationDirect has recently added AchieVe FDM series 12mm tubular photoelectric sensors that offer a rugged metal construction, high IP67 protection ratings, and sensing distances up to 4 meters. These photoelectric sensors feature selectable light-on/dark-on operation, a 10 to 30 VDC operating voltage range, potentiometer or teach-in button sensitivity adjustment, and a fast 1kHz switching frequency. Highly… Read More…

  • METCASE’s TECHNOMET-CONTROL HMI Enclosures Now Offer Seamless Wall Mounting

    METCASE’s TECHNOMET-CONTROL HMI Enclosures Now Offer Seamless Wall Mounting

    METCASE’s premium TECHNOMET-CONTROL HMI enclosures for displays, touch screens and panel PCs can now be conveniently mounted in any suitable indoor location using a new wall mounting kit (accessory). The new kit allows the enclosures to be mounted on walls, machines and other flat surfaces to suit the user’s required location for their HMI system.… Read More…